
Why using predic/ve models?
• Uncover neurobiological mechanisms
• Clinical precision medicine tool
➥ Need for generalizable predic/ve results 

Can correct deconfounding support causal brain-behavioural 
predictive modelling?

Vera A. Komeyer1,2,3, Carolin Herrmann4, Simon B. Eickhoff1,2, Chris:an Gre<es5,6,7, Kaustubh R. Pa:l1,2, Federico Raimondo1,2

1Ins$tute of Systems Neuroscience, HHU | 2Ins$tute of Neuroscience and Medicine (INM-7), FZJ | 3Department of Biology, Faculty of Mathema$cs and Natural Sciences, HHU | 4Mathema$cal Ins$tute, Faculty of Mathema$cs and Natural Sciences, HHU | 5Department of 
Neurology, University Hospital Cologne and Medical Faculty, University of Cologne | 6Cogni$ve Neuroscience, Ins$tute of Neuroscience and Medicine (INM-3), FZJ | 7Centre for Neurology and Neurosurgery, University Hospital Frankfurt, Germany

Problem statement

Which variables to adjust for to deconfound biased models?

Background

Consequences - Predic=ve modeling for causal insights?
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• Project-ID 431549029 –
CRC 1451 – Project B05

• Project VoxNorm
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Example:

Option 1 – Backdoor criterion

(Wysocki et al, 2022)

(Pearl, 1995);
(Angrist et al., 1996); 

(Miao et al., 2018)

Backdoor paths := Paths from X to Y that start with arrow poin/ng into X
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Example:

Option 2 – Alternatives for unmeasured deconfounders

Sta/s/cal evalua/on

Debiased

1. Parametric linear model
→ Residual non-linear signal

2. Adjustment applied to either 
features or target, not both

→ Residual confounding in f/t

LimitaFons of linear (feature) 
residualizaFon

Double ML for the rescue?

1. Confound 
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(could be k-fold)
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ỹ

Build informed 
DAG instead of 
using default 
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→  hard to find in biological context →  cannot be verified
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Example:
Alterna/ves 
hinge on the 
availability of 

measured 
“high-quality” 

variables.

ConclusionsDeconfounded models for causal insights?

ML to deconfound causal treatment 
effect es/ma/on → assumed linear 

treatment-outcome rela/onship
→ feasible for supervised ML?

(Chernozhuk et al, 2018)

Tradi&onal ML – Learn P(Y|X)
→ Associa/ve predic/on

Causal ML – Learn P(Y|do(X))
→ Interven/onal predic/on

Deconfounded tradi&onal ML
• Aims for mechanis/c f-t insights
•  ≠ causal ML (treatment effects)

• Causality assump/ons would s/ll need to 
be fulfilled 

→ causal claims require further jus/fica/ons

1. DAG-informed 
confounder idenFficaFon 

instead of „default“ 
adjustments

2. Linear (f/t) residualiza/on 
has limita/ons

3. Deconfounded models do 
not directly allow for 
causal claims but are 

biologically more 
informa/ve
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